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ABSTRACT: Realistic simulation of coupled geotechnical boundary value problems using the finite element method places 

high demands on element formulations, constitutive soil models and interface modelling. This applies to their (mathematical) 

formulation as well as their (robust) implementation. A novel two-phase Mortar contact is presented which allows to accurately 

model interface behaviour for element formulations discretising both the solid- and the water-displacement (u-U formulation). 

For the latter, a one-point integration is presented, which prevents locking for nearly constant volume conditions. The robustness 

and capability of the implementations are demonstrated by the back-calculation of a shaking-table centrifuge test. The Sanisand-

04 constitutive model is used herein to describe both the soil and the soil-structure interface behaviour. The results of the u-U 

elements are compared to results obtained with (classical) u-p elements. 
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1 INTRODUCTION 

In most finite element codes used in geotechnics, only 

the u-p element formulation is implemented for the 

simulation of coupled (dynamic) analyses. However, 

alternative formulations, such as the u-U or u-p-U 

formulation may offer advantages for some boundary 

values problems (BVPs). The advantages and 

disadvantages of these formulations with respect to 

locking effects, computational performance, application 

to analyses involving contact and dynamic problems 

with high frequencies are discussed in this work. The 

development of reduced integrated  hydro-mechanically 

coupled finite elements enhanced by hourglass stiffness 

for the fluid phases is presented in this paper. Moreover, 

since u-U elements discretise the fluid displacement, a 

Mortar contact disretisation scheme for the fluid phase 

is proposed. The advantages of elements with pore fluid 

displacement degree of freedom in contact analyses is 

outlined based on the practical example of earthquake 

stability of a strip footing. For this purpose, shaking 

table centrifuge tests performed by (Zeybek and 

Madabhushi, 2017) are back-calculated and the 

simulation results are compared to the measurements. A 

special feature of these centrifuge tests is the high 

loading frequency of 50 Hz (in model scale), which 

brings to the fore the question of the applicability of so-

called u-p elements, which is often of high relevance in 

geotechnical engineering (Staubach & Machaček, 
2019). All numerical schemes developed are 

implemented in the finite element programme numgeo 

(Machaček et al., 2021 and Staubach et al., 2022a, 

www.numgeo.de), which is freely available.  

2 FINITE ELEMENT FORMULATIONS 

numgeo offers a variety of element formulations 

based on the theory of porous media, which allow a 

realistic simulation of saturated and unsaturated soils - 

also in dynamic calculations (with simultaneous 

consolidation). In addition to the well-known u-p 

formulation, the so-called u-p-U and u-U formulations  

are also offered, which discretise not only the solid 

displacement (u) or the pore water pressure (p) but also 

the displacement of the pore fluids (U) and are 

particularly suitable for calculations involving high-

frequencies. The u-U and u-p-U elements have been 

implemented and validated in numgeo (Staubach & 

Machaček, 2019). The u-p element formulation neglects 

the relative acceleration between solid and water (the 

accelerations are assumed identical). In order to satisfy 

the Lashenskaya-Babuška-Brezzi condition (Boffi et al. 

2013) and at the same time ensure good convergence in 

contact simulations (Staubach et al. 2022c), 27-node 

brick elements with quadratic interpolation of 

displacements and linear interpolation of pore water 

pressure were used in case of the u-p formulation. In 

case of the u-U formulation, reduced integrated, 

hourglass enhanced 8-node brick elements with linear 

interpolation of the solid and water displacements were 

chosen. The different element formulations used in the 

present study are given in Figure 1. 

To eliminate the volumetric locking caused by the 

inability of linear shape functions to properly 

approximate the incompressibility condition at full 

integration, elements with reduced integration of the 
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solid and fluid displacement are implemented in 

numgeo. 

 

 
Figure 1. Element formulations used for the simulation of the 

shaking table tests in Section 5. 𝑝𝑤 is the pore fluid pressure, 𝑢 and 𝑢𝑤 denote the displacements of the solid phase and the 

pore fluid phase, respectively. 

 

Since reduced integration is associated with rank 

deficiencies, stabilization of these elements is required. 

For this purpose, the method according to (Flanagan & 

Belytschko, 1981) was implemented in numgeo, where 

the element stiffness is stabilized by the addition of an 

artificial stiffness 𝑲𝑠/𝑓,𝐻𝐺: 

 𝑲𝑠/𝑓,𝑒 = 𝑲𝑠/𝑓,1𝑃𝑡 + 𝑲𝑠/𝑓,𝐻𝐺                                                     = 𝑲𝑠/𝑓,1𝑃𝑡 + κ𝑠/𝑓,𝐻𝐺dΩ𝑒 ∑ γαγαα ,               (1) 

 

where 𝑲𝑠/𝑓,1𝑃𝑡 is the conventional element stiffness 

matrix evaluated at one integration point (located in the 

centre of the element) for the solid phase (s) or fluid 

phase (f), respectively. 𝛾𝛼 are the hourglass shape 

vectors according to (Flanagan & Belytschko, 1981). 𝜅𝑠/𝑓,𝐻𝐺 > 0 controls the stiffness of the hourglass 

resistance and can be chosen arbitrarily and, in its 

simplest form, is assumed constant throughout the 

simulation. For the present study 𝜅𝑠/𝑓,𝐻𝐺 are calculated 

as follows: 

 𝜅𝑠/𝑓,𝐻𝐺 = 𝑐𝑠/𝑓,𝐻𝐺 𝜕𝑵𝜕𝒙 𝜕𝑵𝜕𝒙 .                                            (2) 

 

    Therein, 𝑐𝑠/𝑓,𝐻𝐺  have the physical meaning of 

stiffness. For the solid phase,  𝑐𝑠,𝐻𝐺 is typically in the 

range of 0.01𝐺𝑠, with 𝐺𝑠 being the shear modulus of 

the solid. For the water phase, we propose to link 𝑐𝑓,𝐻𝐺  

to the bulk modulus of the fluid phase 𝐾𝑓. 𝑐𝑓,𝐻𝐺 ≈0.01𝐾𝑓 − 0.05𝐾𝑓 has provided good stabilisation of 

the elements in previous investigations without 

significantly influencing the simulation results. If the 

bulk modulus of pure water is used in the simulations, 

it is recommended to choose a lower value for 𝑐𝑓,𝐻𝐺. 

3 CONTACT MECHANICS 

3.1 Contact discretisation 

To date, there has been little research on the treatment 

of contact constraints for element formulations 

discretising fluid displacements. To enforce contact 

constraints, contact forces are required which keep 

surfaces from intersection or, in some cases, from 

separating from each other. The contact discretisation is 

used to calculate the distance and relative motion of a 

surface pairing and eventually integrates the contact 

stresses to obtain contact forces. The shortest distance 

between two surfaces using an iso-parametric 

description in 2D can be calculated by: 

 [∑ 𝑁𝐽(2)(ξ(2)̅̅ ̅̅̅)𝒙𝐽(2)𝑛𝑛𝑜𝑑𝑒𝐽 − 𝒙𝐼(1)] ⋅ 𝒙,𝜉(2)(ξ(2)̅̅ ̅̅̅) = 0.      (3) 

 

    An orthogonal projection of the coordinates 𝒙𝐼(1)
of 

slave node I onto the master surface Γ𝑐(2)
is performed 

for this purpose. 𝒙𝐽(2)
 are the coordinates of node J of 

the master surface and nnodes are the total number of 

nodes of the face of the element belonging to the master 

surface. This is done by enforcing the tangential vector 

of the master surface 𝒙,ξ(2)(ξ(2)̅̅ ̅̅̅) to be orthogonal to the 

normal gap vector with minimum magnitude between 

the master surface and slave node I. The projection for 

the 3D case is schematically shown in Figure 2. This 

projection is performed for both surfaces of the surface 

pair and typically for a larger number of points than 

existing nodes of surfaces. This is advantageous since 

the strongly non-linear distribution of contact distances 

is better approximated. Such schemes are often denoted 

as Mortar contact methods, of which two different 

classes (element-based and segment-based) are 

implemented in numgeo (see Staubach et al., 2022a). 

 

 
Figure 2. Evaluation of the convective coordinates of the 

slave surface for 3D analyses. Figure a) shows the top-view 

on the surfaces. The exemplary evaluation of the convective 

coordinates of the slave surface by projection to three master 

nodes is given in Figure b) 

 

For element formulations discretising the fluid 

displacement, special considerations must be made. 

While the u-p elements do not discretise the movement 

of the pore fluid explicitly, the u-U element formulation 

does. Therefore, the contact constraints have to be 

enforced for the pore fluid movement as well, i.e. the 



One-point integrated hourglass-enhanced u-U elements with mortar fluid-phase contact and Sanisand interface 

       3 NUMGE 2023 - Proceedings 

pore fluid has to be prevented to move into the paired 

object. For some BVPs, this can also be realised by 

coupling the solid movement to the fluid movement 

along the contact surface using multi-point constraints. 

However, a separation of the phases along the interface 

is then impossible. In addition, for most BVPs it is not 

possible to constrain the displacement only in normal 

direction of the contact, i.e. in case of a pile with 

constantly changing normal vector in circumferential 

direction.  

In order to correctly model the interface using the u-

U formulation, the contact discretisation and contact 

enforcement are performed separately for the solid and 

the fluid phases. Thus, contact forces are 

distinguishable and the constitutive contact behaviour 

can be treated separately. The total normal contact stress 𝑡𝑁 is the sum of the effective normal contact stress 𝑡𝑁′  

and the normal fluid contact stress 𝑡𝑁𝑓 , viz. 

 𝑡𝑁 = 𝑡𝑁′ + 𝑡𝑁𝑓 .                                                       (4) 

 

    To determine 𝑡𝑁𝑓 , the same contact discretisation and 

contact enforcement techniques as for the solid phase 

are used. The residuum of contact forces is extended 

contribution of the fluid phase, yielding 

 𝑟𝐼𝐶 = ∫ 𝒕𝐼𝐶,𝑠𝑑Γ𝐶,𝑠 Γ𝐶,𝑠 + ∫ 𝒕𝐼𝐶,𝑓Γ𝐶,𝑓 𝑑Γ𝐶,𝑓 ,                (5) 

 

where 𝒕𝐼𝐶,𝑠
 is the contact stress of the solid phase and 𝒕𝐼𝐶,𝑓

 the contact stress of the fluid phase. Γ𝐶,𝑠and Γ𝐶,𝑓 

are the active contact areas of the solid and the fluid 

phase, respectively.  

Essentially, the Mortar algorithms are applied to the 

fluid phase as well. Conceptually, this can be viewed as 

if there were two meshes with identical numbers of 

nodes but different positions. The contact operations are 

performed for both meshes independently and the 

contact forces are distributed to the two phases 

according to the relative distance of each phase to the 

paired object. 

3.2 Constitutive Contact Model 

A simple Coulomb friction cannot capture the 

strongly non-linear and history-dependent interface 

behaviour of granular media. One solution to this is to 

introduce discrete interface elements, which 

constitutive description is the same as for the 

continuum. However, such interface elements are 

limited to merely small relative tangential movement of 

the contact pair. To overcome this problem, a zero-

thickness formulation in the framework of the Mortar 

contact discretisation scheme is presented in this 

section, which allows to directly adopt existing 

continuum models as interface models. For this, the 

state variables such as stress, density and any additional 

internal variables must be known in the interface. Using 

existing approaches (Stutz et al., 2016), mostly 

formulated for hypoplastic models, the stress state in the 

interface element is not necessarily identical to the 

stress state of the adjacent continuum. However, initial 

jump (prior to shearing) in any stress component 

between interface and continuum violates the static 

stress equilibrium if homogeneity is assumed.  

To resolve the aforementioned problems, a novel 

approach is presented here, where the components of 

normal stress in the interface are the same as those of 

the adjacent continuum. The normal components of the 

stress tensor of the interface 𝑻interface are obtained from 

the adjacent continuum element using 
 𝑻interface =  ∑ 𝑁𝑖𝑔𝑝(𝜉′, 𝜂′)𝑻𝑖𝑔𝑝𝑛𝑔𝑝𝑖𝑔𝑝 .                      (6) 

 

    Therein, the sum over the integration points igp with 

the shape function 𝑁𝑖𝑔𝑝 is evaluated at the “stretched” 
local coordinates 𝜉′, 𝜂′ of the adjacent element. 𝜉, 𝜂 take 

values from -1 to 1 in the coordinate system formed by 

the integration points. This extrapolation using the 

stretched local coordinates ξ', η' is illustrated in Figure 

3. 

 
Figure 3. a) Schematic of the global and local coordinate 

system. b) Mapped stress state in the interface element. c) and 

d) Extrapolation procedure used to obtain the mapped stress 

 

The stress then has to be rotated into the local coordinate 

system of the interface element using 

 𝑻interface′ =  𝜶 ∙ 𝑻interface ∙ 𝜶𝑇.                                  (7) 

 

Where 𝜶 is given by  

 𝛼𝑖𝑗 = 𝒆′(𝑖) ∙ 𝒆(𝑗).                                                         (8) 

 𝒆(𝑗) is the j-th basis vector of the global coordinate 

system and 𝒆′(𝑖) is the i-th basis vector of the local 



Finite element, finite difference, discrete element, material point and other methods 

       4 NUMGE 2023 - Proceedings 

interface coordinate system. The rotation from global to 

local coordinate system is displayed in Figure 3.  

The shear strain increment ∆𝜸 in the interface can be 

determined by 
 

 tan ∆𝜸 = ∆𝒈𝑇𝑑𝑠 .                                                            (9) 

 

In Eq. (4), Δ𝒈𝑇 is the increment of the relative 

tangential displacement of the surfaces in contact and ds 

is the thickness of the shear band. The thickness of the 

shear band is a function of the median grain diameter of 

a sand and is approximately 𝑑𝑠 = 5 − 10 ∙ 𝑑50 (see e.g. 

DeJong et al., 2006). In order to enforce the normal 

stresses in the interface element to be equivalent to the 

normal stresses of the adjacent continuum, the interface 

normal strains required to enforce stress equilibrium are 

iteratively calculated using 
 𝜀𝑖𝑗𝑛+1 = 𝜀𝑖𝑗𝑛 − 𝐽𝑖𝑚𝑘𝑙−1 ∙ (T𝑘𝑙𝐶′ − T𝑘𝑙interface′)𝛿𝑚𝑗.         (10) 

 𝐽𝑖𝑚𝑘𝑙−1  is the inverse of the constitutive jacobian and 𝑇𝑘𝑙𝐶′
 

is the stress due to the consideration of the shear strain 

increment ∆𝜸. 𝛿𝑚𝑗 is the Kronecker symbol. The 

procedure is repeated n-times until (T𝑘𝑙𝐶′ − T𝑘𝑙interface′) 

is sufficiently small; hence, stress equilibrium between 

interface and adjacent continuum is achieved. Note that 

Eq. (5) only enforces equilibrium of the normal stress 

components since the shear stress components are in 

equilibrium automatically. This approach allows for a 

direct application of continuum models to the modelling 

of interfaces, potentially incorporating the interface 

roughness in the constitutive equations. In Staubach et 

al. (2022b) interface models based on the hypoplastic 

model with intergranular strain and Sanisand-04 have 

been formulated. The latter one is used in the 

simulations presented in the next section.  

4 SIMULATOIN OF CENTRIFUGE TESTS 

4.1 Description of the tests  

Shaking table centrifuge tests of a foundation on 

liquefiable soil performed by Zeybek and Madabhushi 

(2017) are back-calculated using the novel numerical 

schemes. A schematic sketch of the centrifuge test in 

prototype scale is supplied in Figure 4 (top). A 

centrifugal acceleration of 70 g has been applied. The 

numerical analyses have been performed in the model 

scale and include the spin-up of the centrifuge (up to 70 

g). On top of initially medium dense Houston HN31 

sand (relative density of 40 %), a brass foundation was 

placed, which loaded the soil by approximately 135 

kPa. The sand was saturated using a fluid with a 

dynamic viscosity 70-times higher than that of water. A 

degree of saturation of 99 % was reported for the 

considered tests (Zeybek and Madabhushi, 2017), 

which results in a bulk modulus of the pore fluid of 

approximately 14 MPa. The applied acceleration signal 

is shown in Figure 4 (bottom) and was applied parallel 

to the long side of the soil. In model scale, the 

predominant frequency of the signal is 50 Hz. The 

permeability of Houston HN31 sand is approximately  1 ⋅ 10−10 m/s (Haigh et al., 2012), which results in a 

hydraulic conductivity of 1 ⋅ 10−3 m/s. Hence, an 

influence of the relative acceleration between the solid 

phase and the pore fluid cannot be ruled out a priori in 

the present case. 

 
 

 
 

Figure 4. Top: Finite element model and mesh (for the u-U 

elements) used for the calculation. The location of the pore-

pressure transducer (PPT) is given. Bottom: Acceleration-

time history of the signal used in the centrifuge test. All 

quantities are given in prototype scale. 

 

The Sanisand-04 constitutive model (Dafalias & 

Manzari, 2004) has been used for the numerical 

analysis. The material constants for the Houston HN31 

sand have been determined based on the simulation of 

undrained monotonic and undrained cyclic triaxial tests 

reported in Bouferra et al (2017) performed on Hostun-

RF sand. Hostun HN31 sand is a successor and behaves 

mechanically similar to the Hostun-RF sand (Alikarami 

et al., 2017). The final set of parameters is given in 

Table 1. The contact between the foundation and the soil 

was discretized using the Mortar method introduced in 

Section 3.1. The penalty method was used to enforce the 

contact constraints for both the solid and the fluid phase.  

The u-U elements offer an important advantage over the 

u-p elements in this regard, because drainage at the top 

surface is automatically only possible for soil not being 
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in contact with the foundation. Since the foundation 

moves significantly in lateral direction during the 

shaking, which can not be known a priori, this is an 

important aspect, which could only be taken into 

account by the u-p elements defining a moving 

boundary condition.  

 
Table 1. Material parameters for the Sanisand-04 model for 

Hostun-RF/Houston HN31 sand 

Parameter value Parameter value 

G0 / kPa 20.0 h0 / - 10.5 

υ / - 0.05 ch / - 0.55 

Mc / - 1.375 nb / - 1.0 

Me / - 0.942 A0 / - 0.9 

λc / - 0.122 nd / - 1.9 

e0 / - 1.103 zmax / - 10.0 

ξ / - 0.205 cz / - 1000 

m / - 0.05 patm / kPa 100 

 

Friction was considered using either a simple Coulomb 

model with a friction coefficient of tan (23 𝜑) with 𝜑 =32° or the Sanisand-04 interface model. For the 

Coulomb model, a tangential stiffness has to be defined, 

which was found to influence the results of the 

simulations strongly since the foundation moves 

significantly in lateral direction during the shaking. This 

tangential stiffness can be obtained from interface shear 

tests and can be correlated with the shear stiffness Gs of 

the solid. In numgeo, the tangential stiffness is defined 

based on the stiffness of the adjacent element. The latter 

option is attractive for the analysis of soils, for which Gs 

is a function of stress, density and additional state 

variables. Using the stiffness-based approach, all the 

effects considered by the adopted continuum model 

(incrementally non-linearity, effects resulting from load 

reversals) are reflected in the interface stiffness as well. 

To do so, at each contact integration point, the 

constitutive Jacobian J of the adjacent element is 

determined by calling the material routine. Then, the 

interface shear stiffness Gc is defined by: 

 𝐺𝑐 =   2⋅𝜆𝑑𝑠⋅(𝑛𝑑𝑖𝑚∙2−3) ∑ 𝐽𝑖𝑖2⋅𝑛𝑑𝑖𝑚𝑖=4                                  (11) 

 𝜆 is a scaling factor, which has a default value of 1. 𝑑𝑠 

is the virtual thickness of the shear zone as introduced 

in Section 3.2 and has the unit of a length. It is set to 5 

mm, which is approximately 10-times the median grain 

of Hostun HN31. J has the unit of stress and 𝐺𝑐 is force 

per volume. Multiplying 𝐺𝑐 by the relative tangential 

displacement increment then gives the shear stress 

increment. 

4.2 Results of the simulations 

The top plot in Figure 5 compares the trend of the 

measured vertical displacement of the centre of the 

foundation with the predictions by the simulations using 

u-p and u-U elements, respectively. Both element 

formulations predict the response well, while an 

increasing deviation between the formulations can be 

observed with ongoing seismic loading.  

 

 

 

 
Figure 5.Vertical displacement of the centre of the foundation 

for the experiment (black) and simulations (coloured). 

Influence of element formulation (top), interface model 

(middle) hourglass stiffness for the water phase (bottom) 

 

The two different friction models are compared in the 

middle of Figure 5. Using the Sanisand interface model, 

a better accordance in terms of final displacament can 

be observed, even though a lightly non-linear time 

history is predicted, which is not in accordance with the 

measurements. The influence of the value of hourglass 

stiffness for the water phase introduced in Section 0 is 



Finite element, finite difference, discrete element, material point and other methods 

       6 NUMGE 2023 - Proceedings 

investigated in Figure 5. A rather limited influence is 

found, which, however, increases with ongoing time. 

 

 

Finally, the development of excess pore water 

pressure measured in two different depths below the 

foundation is compared to simulations using u-p and u-

U elements in Figure 6. The u-U elements tend to 

predict higher amplitudes after 5 s of excitation, which 

is in better agreement with the measurements compared 

to the results obtained using u-p elements. Using the 

reduced integrated u-U elements (4·105 degrees of 

freedom (dofs) in total and 1 integration point per 

element), the calculation time was reduced by a factor 

of 10 compared to the u-p formulation with about 5·105 

dofs but 27 integration points per element, proving the 

computational benefit of the u-U elements over the u-p 

elements.  

 

5 CONCLUSIONS 

A one-point integrated, hourglass-enhanced u-U 

element was introduced, which is found to be 

numerically more efficient compared to elements based 

on the u-p element formulation. In addition, special 

contact constraints for the fluid displacement in contact 

analyses were implemented and a Sanisand-04 friction 

model was introduced. The performance of the different 

numerical schemes was evaluated for the analysis of 

shaking table tests in a centrifuge. Both the 

development of settlements and pore fluid pressure 

were well captured by the simulations. 
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Figure 6. Excess pore water pressure in different depths 

below the foundation for the values measured in the 

experiment and simulations using u-p and u-U elements 

 


